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ABSTRACT

Map generalization changes the semantics and geometry
of map objects according to the context defined by- users.
How to evaluate and ensure the quality of generallzat}on
has become a major issue in contemporary digital
cartography. The semantic change after generalization has
been seldom studied compared with the other two aspects,
i.e. geometry and topology. This research investigat_es the
effect of generalization operations on the semantics gf
maps objects. A set of quantitative measures for semantic
change is put forward. A case study of a land use map is
carried to illustrate the practical usefulness of these
proposed measures, with merging as an example for
polygon generalization. The results indicate that these
measures are not only sound in theory but also meaningful

in practice
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1 INTRODUCTION

Map Generalization is a process of selection and
simplification of details of a map according to the scale
and/or the purpose of the map [1]. Such a process is used
to derive small-scale maps from large-scale maps. Many

operations are applied to achieve the aim of generalization.

An operation defines the geometric transformation that is
to be achieved; and a generalization algorithm is then
used to implement the particular transformation. There are
many operations used in generalization and the basic ones
are  simplification,  selection/elimination, — merging
aggregation, symbolization, collapse, exaggeration,
displaceme,t, typification and smoothing[2, 3, 4].

In order to derive the simplified model (or representation)
of reality at a smaller scale, these operations essentially
modify the geomelry, topology and/or semantics of the
objects from a high resolution to a low resolution. For
example, simplification and exaggeration only modify the

metric aspects of the objects; selection/elimination,
merging, symbolization and aggregation essentially
modify the topological aspects; and displacement is
primarily metric, but can also cause topological changes
in some cases [5]. The changes in topology and geometry
may result in semantic changes, and vice versa. The
topological changes indirectly imply metric changes as
well, but not vice versa. For instance, where the real
world distance between a lake and a village is too small to
be displayed graphically at a given scale, it is certain tha
the railway and road between the lake and village also
cannot be represented, resulting in a spatial conflict in
representation. Displacement is a solution, but leads to a
loss in positional accuracy [6]. Further, due to the removal
of the railway/road, the semantics of the map is the
changed, which leads to loss in the semantic accuracy.

How to evaluate and ensure the quality of generalization
is becoming a major issue in contemporary digital
cartography. The assessment of automated generalization
results has so far largely relied on visual and qualitative
methods that are specific for particular procedures
[7,8,9,10], particular aspects of the spatial objects
(attribute accuracy) [11,12], and particular shape changes
(only for linear objects) [13]). Very few quantitative
assessment methods are available when multiple objects
are involved or the entire map needs to be characterized
[4, p.150]. Recently a method has been proposed by Bad
[14] for evaluating generalization quality by comparing
the difference between the observed result (after
generalization) and the theoretical result (reference o
initial characterization of the object). In Bard’s approach,
§hree geometric properties are taken into consideration,
1.e. position, concavity ratio and size. Galanda [15]
modeled the constraints for polygon generalization, which
could serve as a guideline for general quality control. Bu
semantic issue is rarely touched in such work.

Indeed, the change in semantics after generalization has
been seldom studied compared with the other two aspects,
geometry and topology. This research is to investigate the
effect of generalization operations on the semantics dof
polygon objects on thematic maps, as semantics plays a
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fundamental role in the modeling and representation of
geographic objects [16, p.559]. A set of quantitative
measures will be developed to measure such effects.

The next section defines a strategy for the evaluation of
the quality of semantics after generalization. A set of
quantitative measures, i.e. accuracy, consistency and
completeness, is described in Section 3. The effect of
generalization on semantics is analyzed in Section 4,
where merging is taken as a case for deep analysis. An
experimental test is reported in Section 5. A discussion on
the practical usefulness of these measures is given in

Section 6. Some concluding remarks are given in Section
p

2 ASSESSMENT OF SEMANTIC
QUALITY: A STRATEGY

2.1 MERGING AS A CASE FOR STUDY

For the generalization of polygons on thematic maps, the
two basic operations are merging and aggregation. Here
merging refers to a process to eliminate small areas or
sub-polygons. This is also referred to as coarsen in some
literature. After the merging process, the original objects
cease to exist (see Figures 1 and 2). Aggregation refers to
the process that deletes edges between similar objects and
forms a composite object. The semantics of the original
objects are then transferred to the new composite object,
but the original objects do not cease to exist [17].
Merging is usually done with priority given to the
neighbor that shares the longest border or the largest area.
These two approaches to merging have been implemented
in Arc/Info as elimination [18). Indeed, Merging is
actually a geometry-driven approach. On the other hand,
aggregation is usually carried out because of common
thematic characteristics with the neighbors, thus it is
actually a class-driven approach. The semantic change in
aggregation is not as obvious as in merging. Therefore,
this paper will concentrate on the semantic change due to
merging operation. Although merging can be applied to
point, line and area objects, we mainly consider the area
objects (i.e. polygons) in thematic maps.

2.2 3 ELEMENTS FOR DATA QUALITY

For evaluation of semantic quality, attribute accuracy,
completeness, consistency and currency are the elements
to be considered [19].

Accuracy is the probability of correctly assigning a value.
It describes the stochastic errors of observations on
attributes and is a measure that indicates the probability
that an assigned value is acceptable.

Completeness refers to the symmetric difference between
the perceived reality and the database at a given moment.
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Consistency is the validation of semantic constrains. It is
the result of the validation of semantic constrains of the
objects, attributes or relations.

Currency measure changes over time and describes the
semantic quality at a given time, say T.

Here accuracy, completeness and consistency of the
semantics after generalization are discussed as currency of
the semantics involves the temporal change of the data.

2.3 GENERALIZATION AT 3 SPATIAL LEVELS

It has been pointed out that map generalization could be
carried out at one the three spatial levels 15, 20], i.e.

® Map level,

® (Class (group) level and

® individual feature level.
For polygon generalization, an individual feature means a
polygon. Such a three-level decomposition is also referred
to as macro, meso and micro levels by other researchers
[21,22]. Quality evaluation of generalization at these three
levels has also been conducted [14].

The elements of semantic quality for different spatial
levels are shown in Table 1. It can be seen that the
accuracy can be mapped to a polygon, a class and a map;
consistency and completeness can only mapped to a class
and a map since it don’t make sense for a polygon.

Table 1. An evaluation matrix for semantic assessment

Data Quality Spatial levels
Component Polygon Class Map
Accuracy L s ¥
Completeness + +
Consistency + +

3 MEASURES FOR  SEMANTIC
QUALITY

In the following sections, a set of quantitative measures
for the semantic quality will be developed. The discussion
is mainly related to category maps such as a landuse map
that has discrete (or nominal) value attributes.

3.1 ACCURACY

Accuracy can be assessed at three levels. At polygon (i.e.
feature) level, the attribute accuracy can be described by
the certainty index for the new area objects created after
generalization. The accuracy of the new area objects
created after generalization will be discussed in Section
4.4 and can be calculated by Equations 13-15.

At class level, the accuracy for Class K can be calculated
as follows
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where, i is the objects which belong to Class K after
generalization; ,u,.C" is the certainty of Area i belonging

to Class K, which can be derived based upon Equations
13-15; N is the number of objects belonging to Class K

after generalization; Area(i)., is the area of Polygon i

which belongs to Class Cy.

At map level, the accuracy should be evaluated for the
whole map as follows:

M N,

ZZ/‘:G * Area(i)., 2)

M o_ ==l

&= M N,

Z Z Area(i)(-,

y=1 =l
where M is the number of classes after generalization; N;

is the number of objects belonging to Class j after
generalization; ;l,-c’ is the certainty of Area i belonging to
Class Cj, which can be derived based upon Equations 13-
15; A rea(i)cl is the area of Polygon i belonging to Class

G.

It can be seen that valuations of accuracy at three-levels
are mainly related to the object and classes after
generalization. They all have a value within 0 to 1. The
higher the value is, the better the accuracy is.

3.2 CONSISTENCY

Consistency for a given constrains is given by the ratio
between the number of violations and the number of
checks of constraint, which was defined by Salgé [19] as,
i G)

i

where N' is the number of violation and N is the number
of checks of the constraint.

The obvious violation in semantics after generalization is
the change .of class types for the objects. Therefore,
Equation 3 is modified to describe the attribute change at
the class level and the map level.

At class level, the consistency can be defined as

. @)
(/] Nq

¥ is the number of area objects which belonged

where No,

to Class Cx (before generalization) and changed their
class type after generalization; N,. is the number of area

objects belonging to Class X (before generalization).

As for the map level, the consistency can be defined as
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where M is the number of classes (before
generalization); N B ¥ is the number of area objects which

belonged to Class Cy (before generalization) and changed
their class type after generalization; N ¢ s the number of

area objects belonging to Class j (before generalization).

In addition to number of objects that change their class
types after generalization, the consistency of semantics
can be represented by the attribute change in terms of
areas of the objects. Bregt and Bulens [23] defined the
attribute change index as follows:

attribute change index

(6)

_ sum of absolute area differences per class
total surface

In Equation 6, the area difference is that of the original
with generalization per class.

Equation 6 can be considered as another measure for the
consistency at the map level. In order to have a same
format, Equation 6 is re-written as Equation 7:

M v
v ZAreao
J
M _ Areao _ j=1

Area :V: ZN: Area(i) ¢

j=1 i=l
where M is the number of classes (before generalization);
lo’

(M

pArra

Areaoj is the absolute area difference of 6bjects

belonging to Class j before generalization and after;
Area(i) is the area of Object i which belongs to Class

J before generalization.

At class level, the consistency in area can be defined as
Equation 8.

s i: Area(i)., - i Area(i)., (8)

& _ Area,, — ml
N

x 2.;4'lr¢a'¢1(t')(-‘r
=l

where N is the number of objects belonging to Class Cy
after generalization; N, is the number of objects belonging

to Class Cy before generalization, Area(i)., is the area

paln-

of Polygon i which belongs to Class Cx before
generalization.

3.3 COMPLETENESS

The completeness can be given by two figures: the rate of
over-completeness (or commission) and the rate of
missing data (omission). Completeness applies for the
objects of a class, attributes and relations between objects
[19, p.147]. Since objects and classes will be lost after



generalization, here we only discuss the situation of
omission. Omission is defined by Salgé [19] as follows,
rw— ©)
max(N,N°)
where N’ is the number of occurrence in the perceived
reality; N is the number of occurrence in the sample; N~

is the number of occurrence in the perceived reality which
does not exist in the sample.

Here we assume the original map before the
generalization to be the perceived reality, and the map
after generalization to be the sample. In such a case,
N° 2N and max(N,N°)=N°. Therefore Equation 9 is

modified as Equation 10 to evaluate semantic
completeness at the class level in terms of object omission
for each class.

Cx Nr-)“
7 (10)
Ocy

where 7™ is the ratio of object lost in Class Gy, N; is
Cx

the number of objects lost for Class Cx (omitted) after
generalization; NS is the number of objects belonging to

Class Cy before generalization.

Equations 11 and 12 are the semantic completeness at
map level in terms of object omission (the loss of objects
for the whole map after generalization) and class omission
(the loss of thematic classes after generalization),
respectively.

o _Ng (11)

where 7,7 is the ratio of object lost for the whole map

N is the number of objects lost for the whole map after

generalization; N is the number of objects for the whole

map before generalization.

M _ N (12)
Ne

where 7" is the ratio of class lost for the whole map

Tc

Nz is the number of class lost (omitted) after

generalization; N? is the number of class types before
generalization.

3 EFFECT Of GENRALIZATION ON
SEMANTCS: MERGING AS A CASE

Here an example is used to illustrate the effect of
generalization operation on the semantic change, with
merging as an example. ‘

4.1 SITUATION 1: COARSEN

The first situation (see Figure 1) is that the small areaD is
contained in (or isolated by) a large area 4 (as
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background). After generalization, D is merged into A4.
We use 4’ to represent the area after merging, although in
the database it is still represented asA.

e

Figure 1. The case of merging (1) - Small area D is
merged into background areaA.

4.2 SITUATION 2: AREA- AND BORDER-BASED

The second situation involves a small area D adjacent to
several larger areas (Figure 2A). The merging will depend
upon some geometric criteria defined. In general, there
are two ways to merge Area D. The first way is to merge
D with Area A due to its biggest size (Figure 2B). This
approaches of merging is referred to as area-based
merging in this paper. The second way is to mergeD with
Area C due to its longest common boarder withD (Figure
2C). This approach is referred to as border-based merging
in this paper. These two ways are geometry-based
approaches and they are implemented GIS software such
as ArcInfo (see [18]).

D)

(o}
Figure 2. The case of merge (2) - Small area D is merged
into one of its adjacent areas.
(A) Small area D and its adjacent areas; (B) Small area D is
merged into A, (C) Small area D is merged into C; (D) Small
area D is merged into B

4.3 SITUATION 3: SEMANTICS-BASED

The third way can be a semantics-based or knowledge-
based approach, i.e., to merge D with Area B due to its
closest semantic similarity with D (Figure 2D). Semantic
similarity of two area objects has been discussed in
several papers. For examples, the sharpness of a boundary
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for a polygon was defined based upon the pu::ity of
polygons [24]; the sharpness of boundaries for regions in
raster format was defined based upon the fuzzy
membership value [25, p.64]; a semantic similarity
evaluation matrix was proposed in [26].

Other semantics, such as priority given to “wood into
forest” rather than “wood into lake”, may also be
considered as criteria for merging. Indeed, it can be
considered as knowledge-based approach. The use of the
prior-knowledge of thematic maps has been proved an
effective approach to landuse map generalization [27].

44 THEMATIC ACCURACY (CERTAINTY) OF
INDIVIDUAL POLYGON AFTER MERGING

OPERATION

Although these three ways has different criteria for
merging, the thematic certainties of the new created area
A’ B’ or C’ can be calculated as follow (although in the
database they are still represented as 4, B, C, respectively):

. Area(A)-u’" + Area(D)-u' (13)
u; =

‘ Area(A) + Area(D)

P Arm{a)-u'," +Arm(D)-u;‘ (14)

* " Area(B)+ Area(D)

., _ Area(C)-ul + Area(D)-uff (15)
e T rea(C) + Area(D)

These values are used for computation of thematic

accuracy at class and map levels.
Here we assume Areas 4, B, C and D are fuzzy objects
[28] and they belong to Classes 4, B, C and D with

membership function values as {,,;'.',,‘r.'u‘rr’"? }f ,
{us  ug use uley’ ’ g ul ule ule)” and
{ w0l a5 uGe g }7, respectively. In Equations 13-15,
u$ ulr ule are the membership function values of Area

A, B or C belonging to Class 4, B or C, respectively;
ust usr uc are the membership function values of Area

D belonging to Class 4, B or C, respectively.

If Areas A and D are crisp objects which belong to Class
A and D, respectively and certainly, ie. 4 =1 and

u‘* =0, Equation 13 becomes Equation 16.

i =

o Area(A) (16)
“ Area(A)+ Area(D)

If Areas A and D are thematically similar, i.e.4 = ]and
u* =1, then y* =1. It means there is no uncertainty

created by merging if 4 and D fully belong to a same
class.

If the value of Equation 13, 14 or 15 is close to 1, it

indicates the change in semantics is small and the quality
of generalization is good; on the other hand, if its value is
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close to 0, it indicates the change in semantics is a lot and
the quality of generalization is low.

3 CASE STUDY

A land use map of a sub-area of Wuhan, China (Figure 3)
is used for test in this study. It is assumed that this land
map is free of uncertainty and is used as source data for
generalization.

o
o 0
o 7 @ o
5 : '; S8
{0 e
*a 8
2
Q
Figure 3. A detailed land use map (Baogin Area, Hankou,
Wuhan, China)

At the polygon level, the merging operation is applied to
eliminate the small areas with highest priority given to the
metric constraint of minimal area. Here the two
algorithms available in ArcInfo (i.e. longest shared
boundary (border-based) and largest area (area-based))
are used to compare their difference in effect on semantic
quality after generalization. In order to check the
influence of metric constraint (i.e., size of the minimum
area, or minimal mapping unit - MMU), three threshold
values (1000, 2000 and 4000) are applied to both
algorithms. The different values of the MMU correspond
to different target map scale. Figures 4A and 4B show the
merged results based upon largest area and border
respectively, with the MMU= 2000.

5.1 ACCURACY

Figqre 4C represents the semantic accuracy of Figure 4B
(which are calculated based upon Equations 13-15). It
represents the thematic accuracy at polygon level.

At class level, the semantic accuracy ( <) for the border-

based algorithm with MMU=2000 is listed in Column 2
of Table 2, which are calculated based upon Equation 1.

Based upon the accuracy at the class level, the semantic
accuracy at the map level is calculated based upon
Equation 2 and the measure of * =0.979.
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28

Figure 4. Generalization results by Merging.

The merged results based upon the largest area.

The merged results based upon the largest border.
Thematic accuracy of Figure B. Circle | indicates an area
in @ doesn’t exist in b; Circle 2 indicates an area in B

doesn’t exist in A.
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Figure 5. The small areas have been merged out.

A. represents the original class types
B. represents the class types after generalization based upon

largest area;
C. represents the class types after generalization based upon

largest border;

Three circles in cach figure represent three typical situations. Circle |
represents an arca in C which changes its class type to different class
types in A and B; Circle 2 represents an arca in C which changes its
class type to a same class type in A and B; and Circle 3 represents an
arca in C which docsn’t change its class type in both A and B.
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Table 2. Semantic quality at the class level

Accuracy ( ,uc ) Consistency ( pfn_a) Completeness (T;r )

'(]:";’;: 2B 1A 1B 2A 2B 3A 3B 1 2 3
99| 0.983 0.001 0.003  -0.002 0.007 -0.025 0.003f 0.029 0.100 0.200
Cll1 0.964f -0.028 -0.028 -0.070 -0.036 -0.149 -0.081f 0.250 0.400 0.600
C12 1. 0.000 0.000 0.000 0.000 -0.258 -0.193] 0.000 0.000 0.571
C21 1 -0.009 -0.009 -0.024 -0.024 -0.139 -0.107] 0.095 0.143  0.381
C22 1 0.000 0.000 -0406 -0.406 -1.000 -1.000, 0.000 0.500 1.000
Cc23 | 0.000 0.000 -0.189 -0.189 -0.344 -0.344 0.000 0.400 0.600
C25 1. 0.000 0.000 0.000  0.000 0.000  0.000, 0.000 0.000 0.000
C26) 1. 0.000 0.000 -0.052 -0.052 -0.276 -0.276] 0.000 0.167  0.583
C32 1 0.000 0.000 0.000 0.000 0.000  0.000] 0.000 0.000 0.000
C35 1 0.000 0.000 0.000 0.000 -1.000 -1.000 0.000 0.000 1.000
C36) I 0.000 0.000 -0.130 -0.130 -0.130 -0.001} 0.000 0.667 0.667
C4l 1.000 0.000 0.000 0.000  0.000 0.000 0.000{ 0.000 0.000 0.000
Csl 0982 -0.014 -0.014 0.004 0.004 -0.040 -0.008f 0.286 0.286  0.429
C52 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000] 1.000 1.000 1.000
Cél 1.000f 0.000 0.000 0.000  0.000 0.000  0.048] 0.000 0.000  0.000
C62 1.000f 0.000 0.000 -0.071 -0.071 -0.349 -0.349] 0.000 0.167  0.500
C63 1.0000  0.000 0.000 -0.239 -0.239 -1.000 -1.000f 0.000 0.500  1.000
C65 1.0000  0.000 0.000 0.000 0.000 -1.000 -1.000f 0.000 0.000  1.000
C7 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000f 1.000 1.000 1.000
D3 0.841 0.000 0.190 0.000 0.190 -1.000 -1.000{ 0.000 0.000 1.000
Gll 0.975 0.000 0.026 0.000 0.026 0.000  0.438( 0.000 0.000  0.000
Ml 1.0000 -0.193 -0.193 -0472 -0.040 -1.000 -1.000, 0.500 0.800 1.000
MI13 1.000{ 0.000 0.000 0.000 0.000 0.000 0.000{  0.000 0.000  0.000
M2 0.990 0.000 0.000 -0.049 -0.040 -0.107 -0.097] 0.000 0.250  0.438
M21 0.000 0.000 -1.000 -1.000 -1.000 -1.000] 0.000 1.000 1.000
M3 1.000  0.000 0.000 0.000 0.000 -0.098 0.143]  0.000 0.000 0.250
R11 1.000{ 0.000 0.000 0.000  0.000 0.002 0.002| 0.000 0.000 0.333
R12 0.000 0.000 -1.000 -1.000 -1.000 -1.000{ 0.000 1.000 1.000
R21 0.982 0.003 0.007 -0.021 -0.010 -0.106 -0.070{ 0.034 0.172 0414
R22 1.000 0.008 0.000 -0.086 -0.095 -0.201 -0.225{ 0.000 0.333  0.667
R3 0.725 0.000 0.000 0.000  0.380 0.000 0.380{ 0.000 0.000  0.000
R31 0.981 0.000 0.003 0.002 0.011 0.008  0.042[ 0.087 0.159  0.275
R32 0.991 -0.012 -0.012 -0.100 -0.092 -0429 -0.421| 0.056 0.278 0.722
R41 0.962 0.007 0.005 0.042 0.038 0.057 0.057) 0.043 0.043 0.217
R42 0.977 0.006 0.006 -0.012 -0.018 0.004 -0.011} 0.250 0.450  0.650
S1 0970 0.012 0.003 0.070 0.031 0.324  0.158] 0.000 0.000 0.000
Tl 1.000f  0.000 0.000 0.000 0.000 -0.382 -0.382| 0.000 0.000  0.500
T23 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 1.000 1.000  1.000
T4 1.0000  0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000  0.000
T42 ] .OO(A 0.000 0.000 -0.963 -0.963 0.000 0.000{  0.000 0.750  0.000
U3 1.000]  0.000 0.000 0.000 0.000 -1.000 -1.000 0.000 0.000 1.000
U91 1.000] -0.068 -0.068 -0.068 -0.068 -0.068 -0.068 0.500 0.500  0.500
Wi 1.000 -0.038  -0.038 -0.067 -0.067 -0.144 -0.072| 0.333 0.444 0.556
average 0.982 -0.077 -0.073 -0.184 -0.159 -0.345 -0.312] 0.127 0.291  0.513
max 1.000 0.012 0.190 0.070 0.380 0.324  0.438 1.000 1.000  1.000
min 0.725( -1.000 -1.000 -1.000 -1.000 -1.000 -l .0001 0.000 0.000  0.000
stdev 0.051 0.258 0.261 0.346  0.356 0.432 0462 0.274 0.343 0.378
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5.2 CONSISTENCY

Semantic consistency in area at the class level is
summarized in Column 3 ( pS ) of Table 2, where

negative value means the area for the class is reduced; and
value “-1"” means that there is no objects in this class (i.e.
the class is omitted). It is calculated based upon Equation
8. It can be seen that the consistency index p¢ _ increases

with the MMU at the class level. It implies that the
inconsistency in semantics at the class level increase with
an increase in MMU.

Semantic consistency at the map level is reported in Table
3. Both consistency indexes in terms of area ( pj:' ,) and

object ( p,') violation increases with an increase in MMU

at the map level. The differences between the indices of
the border-based and the area-based are not obvious at
three spatial levels. This is also approved by the results
that an average 98.2% of merged areas based upon the
largest area and 97.2% of merged areas based upon the
largest border change their class types after merging (see
Figure 5). It implies that the inconsistency in semantics at
the map level increases with an increase in MMU.

Table 3. Thematic consistency at the map level
MMU M M
p/l'rra pO

A B A B

1000 0.006 | 0.006 0.089 | 0.087

2000 0.031 | 0.027 0.214 | 0.212

4000 0.123 | 0.087 0416 | 0.409
(4 and B represents the area-based and border-based merging,
respectively)

In general, the consistency decreases with an increase in
MMU at the class level and the map level. There is not
much difference with the area-based and the border-based
algorithm.

5.3 COMPLETENESS

Column 3 (r;;') of Table 2 summarizes the semantic

completeness at the class level. Generally speaking, the
completeness indicator increases with an increase in
MMU at the class level. It implies that the completeness
in semantics at the class level decreases with an increase
in MMU. Since the number of objects lost in both
algorithms are the same, the completeness for both
algorithms are the same at the class level.

Table 4 summarizes the semantic completeness at the map
level. It can be seen that the number of objects and classes
after generalization decrease with an increase in MMU. In
another word, the semantic completeness index at map
level increases with the MMU. Since the number of
objects lost and the number of classes lost in both
algorithms are the same, the completeness for both
algorithms are the same at the map level.
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Table 4. Semantic completeness at the map level
- M M
e | | Lo e [ 1"
Merged A B
1000 | 39 0.068 | 4 4 0.092
2000 | 92 0.114 |5 5 0.216
4000 | 179 0.274 | 12 12 0.421

(Number of original objects is 425; Number of original classes is
44.)

It implies that completeness of semantics decreases with
an increase in MMU. For the whole map, the reduction of
object number is around 6.8% to 27%; the reduction of
class number is around 10% to 40%.

In general, the completeness indicators increase with an
increase in MMU at the class level and the map level. It
implies that the quality of completeness of semantics
decreases with an increase in MMU at the class level and
the map level. There is no difference with the area-based
and border-based algorithm.

6 PRACTICAL USEFULNESS OF THE
QUALITY MEASURES: A DISCUSSION

The three quality measures of the semantics at three levels
are discussed in above sections. What is their practical
usefulness? Here we try to interpret these quality
measures from the practical viewpoint. The accuracy of
the semantics represents the purity of the polygon, the
class or the map. At the polygon level, the purity of each
polygon is calibrated so that any area has inclusion is
clear and cautious can be taken for further analysis. At the
class level, if we are especially interested in a class (such
as a special landuse), we should consider if the algorithms
could satisfy the requirement of the semantics for that
class. At the map level, we may pay attention to the
quality for the whole map to check if the map has
sufficient semantic quality for further usage.

The consistency in area represents the mis-matches of
areas for different classes after generalization. The area
sizes of a class of polygons before and after generalization
could be quite different. If this mis-match is too big to be
accepted, the generalization operation should then be
avoided. In other words, alternative generalization
operations should be applied.

The completeness represents the omission of objects and
classes at the class and map levels. Since the omission of
objects might imply the omission of the owners of a
parcel (a polygon in the landuse map), the indicator of
completeness of object omission provides a further
constraint for quality control of generalization. If a
complete class of polygons is omitted after generalization,
and if this class type is very important for the application,
omission of that class should then be avoided. It also
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implies that the particular generalization operation
shouldn’t be applied in such a case.

Generally speaking, the quality measures offer a mea_ns
for quality control of generalization. It provides quality
information of maps after generalization to map user and
help them decide if the generalized map is qualified for
further analysis. The quality information can also be used

to facilitate the cartographers in choosing proper
operations and algorithms for map generalization.

7 CONCLUSIONS

This paper picks up a particular type of maps, polygon
maps, for discussion. The aim is to evaluate the eﬂ'ect- of
gcneralization on the semantic changes. Special attention
has been given to the uncertaiqty in semantics created in
the generalization operation,. w1.th merging operation as a
case analysis. A set of quantitative measures, i.e. accuracy,
consistency and completeness, has been developed for
semantic quality assessment. A set of real-life data
(landuse map) has been used to evaluate these measures.
In such a test, different MMU values are used, which
correspond to different target map scales.

It is found that the semantic quality in terms of accuracy,
consistency and completeness decreases with an increase
in the MMU (minimal mapping unit) value. It means that
the semantic quality of the thematic map become poorer
at a smaller scale. This is in accordance with our common
sense. Such is also the case for the quality of topographic
maps. Therefore, the set of quantitative measures
developed in this project is theoretically sound and

meaningful in practice.

It should be noted here that, although the set of quality
measures for semantic change is only applied to merging
operation in this study, it is applicable to other operations

for polygon maps.

In this study, only the situation in which the original
source data have no uncertainty has been analyzed. It is
desirable to study the situation where there is uncertainty
in the source data in further research. Also it would be of
great interest to systematically analyze the changes of
semantics after generalization with MMU and then to find
out the correspondence between MMU and map scale.
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